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SUMMARY

A statistical analysis of parental age and the incidence of new muta-
tion has been performed. Some new data on Apert, Crouzon, and
Pfeiffer syndromes is presented and combined with all available data
from the literature on parental age and new mutation. Significant
heterogeneity among syndromes for the rate of increase in incidence
with parental age was found. A parsimonious conclusion is that muta-
tions fall into two groups, one with a high rate of increase with age and
the other with a low rate of increase with age. For the high-rate-of-
increase group, a linear model relating incidence to age is rejected,
while an exponential model is not. In addition, for this group, in-
creased paternal age cannot account for the observed increase in ma-
ternal age-that is, increased maternal age also contributes to the
incidence of new mutations. For the low-rate-of-increase group, in-
creased paternal age alone can account for the observed increase in
maternal ages; also, either a linear or exponential model is acceptable.
In addition, there is no evidence for a mixture of parental age-
independent cases with parental age-dependent cases for any of the
syndromes examined. The curves reflecting incidence of new muta-
tion and paternal age for two syndromes, Apert and neurofibromato-
sis, have an anomalous shape. In both cases the curve increases up to
age 37 and drops at age 42 before increasing again at age 47. The
usual explanation for the effect of parental age on new mutations is
the mechanism of "copy-error" at mitotic division in male sper-
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SPONTANEOUS MUTATION AND PARENTAL AGE

matogenesis. These results cast doubt on this phenomenon as being
the primary mechanism underlying the majority of spontaneous muta-
tions for autosomal dominant disorders in man.

INTRODUCTION

Despite much theoretical speculation, the source of spontaneous mutation in
humans remains unknown. An early clue was discovered by Weinberg (1912),
who attributed increased parental ages in sporadic cases of achondroplasia to
new dominant mutation. After the discovery of DNA and its method of repli-
cation, there appeared new theories as to the origin of the parental age effect
for new mutations. Specifically, Penrose (1955) attributed the increased inci-
dence of mutation with parental age to the continuous replication of stem cells
in male spermatogenesis. He described a "copy-error" model, whereby stem
cells would accumulate mutations with each replication. In an extensive review
of the subject, Vogel (1956) and Vogel and Rathenberg (1975) have also conjec-
tured that this type of model underlies the parental age effect for new muta-
tions.
A critical issue is whether mutations occur primarily owing to replication-

dependent or to replication-independent mechanisms. Uncorrected errors dur-
ing replication of DNA provide a natural means for mutations to occur. If
mutations are due to replication errors, then such errors are much more likely
to occur in males than in females, since female germ cells have undergone far
fewer cell divisions than male germ cells. Vogel and Rathenberg (1975) have
used all available evidence to create a composite picture of oogenesis and
spermatogenesis. In oogenesis, -24 cell divisions have occurred to give rise to
the full complement of a female's oocytes; in contrast, by puberty, 30 cell
divisions have occurred among spermatozoa in males. Stem cells undergo
mitotic divisions about every 16 days, resulting in 23 divisions/year. Hence, in
a man aged 28, the spermatozoa would have undergone -380 divisions and
replications, which is approximately 15-fold greater than the corresponding
number for oocytes. If stem-cell replications and divisions occur at a constant
rate, then the total number of divisions underlying spermatozoa will be linear
with paternal age, with an accumulation rate of -23/year. Therefore, if most
mutations are dependent on replication, then the vast majority should occur in
sperm and not in ova, and the rate should increase with paternal age, indepen-
dent of maternal age. Maternal age would appear to be increased only through
correlation with paternal age. On the contrary, if most mutations are not repli-
cation dependent, then the mutation rates might be relatively similar in males
and females, and any parental age effect could be attributable to both males and
females.

Since the time of the Vogel and Rathenberg (1975) summary, additional data
have appeared in the literature; we also have collected further data for a num-
ber of syndromes. Therefore, we believe the time is prudent for a critical
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examination of the issue of spontaneous mutation and parental age. We start
out with some theoretical developments relating to the "copy-error" model,
expected increases in parental age, and examination of paternal versus mater-
nal age effects. We then perform formal statistical analyses of our own data
plus data collated from the literature regarding these issues and heterogeneity
among and within syndromes.

The Copy-Error Model-Theoretical Aspects
In this section we attempt to characterize the relationship between paternal

age t, the number of mitotic divisions experienced by a spermatid produced by
a man of age t, and the probability that the spermatid carries a new mutation.
We make the following definitions: N(t) = the random number of mitotic
divisions experienced by a spermatid in a man of age t; ft(x) = probability
density function for N(t); F,(x) = probability distribution function for N(t);
pL(t) = E[N(t)] = foxft(x) dx, where E is expectation; or2(t) = Var[N(t)] =

iX - pA(t)]2ft,(X) dx; Q(n) = the cumulative probability of a new mutation
existing in a spermatid after n mitotic divisions; and wI(t) = the probability that
a spermatid produced by a man of age t carries a new mutation. Implicit in our
formulation is the assumption that the probability of a new mutation depends
on t only through n, the total number of mitotic divisions. We can then write the
following equation:

,r(t) = f Prob[N(t) = x]Q(x) dx = f f,(x)Q(x) dx . (1)

1. Q(x) is linear in x.-Here we assume that the probability of a new muta-
tion occurring at a mitotic division is independent of t. In this case, the same
probability exists at each division, and so the cumulative probability of a muta-
tion after x mitotic divisions is linear in x, namely,

Q(x) = b + a(x - to),

where to may be some age (e.g., puberty) at which mitotic divisions begin.
Then, from equation (1), we have

r(t) = f ft(x)Q(x) dx = j f,(x)[b + a(x - to)] dx = b + a[pt(t) - to]. (2)

Thus, frr(t) is linearly related to the expectation [pL(t)] of N(t) when Q(x) is linear
in x.

2. N(t) as a renewal process.-For more general functions Q(x), we further
characterize N(t) as a renewal process. We make the following definitions:
Yj = the random time interval from the i - 1 to the ith mitotic division in a
sperm stem cell; E(Y,) = oi = a (assumed independent of i); and Var(Yd) =
= p2 (assumed independent of i).
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In addition, we assume that the Y,, i = 1, . . . , are independent and identi-
cally distributed; that is, the time period between mitotic divisions does not
depend on t. Then N(t) constitutes a renewal process. By the Central Limit
Theorem for Renewals (Feller 1968, eq. 12.10), we have

N(t) - tka 3 49(x) (3)

in distribution as t -- 00; that is, the distribution function Ft(x) converges
asymptotically to a normal distribution with mean ,udt) = tia and variance
o2(t) = t2/3.
The normality conclusion does not require that the Y, be identically distrib-

uted, since more liberal assumptions can be tolerated (e.g., Lindeberg's
theorem; Feller 1968). Hence, it may be reasonable to assume normality ofN(t)
for large values of t even though the Y, have different means and variances
(e.g., if ati decreases with i).

3. An exponential modelfor Q(x).-Here we assume that Q has an exponen-
tial relationship with x, namely, Q(x) = cebx. Assuming normality for F,(x), we
have, from equation (1):

t - Jf(x)Qx) dx

= J 1 e- 1(2tIX- ±(0t)]/of(t)2cebx dx = ceb>L(t)+ 1/2b

\Jo¢(t)

According to formula (3), ,u(t) = t/a and cr2(t) = t42/(a3,

Tr(t) = cebt/L +1/2b2t,32/C3 = cet(b/a +1/2b2 2/a3) = ceat,

where a = b/a + '/2b2 p2/a3. In other words, if Q(x) is exponential in x, then the
probability of a spermatid produced by a man of age t carrying a new mutation
is also exponential in t. This relationship will also hold true when bo2(t) is small
relative to pt(t); for example, if there is little variation in the time between
mitotic divisions of stem cells (P is small relative to a).
Other models relating probability of new mutation Q and number of cell

divisions x are possible-for example, the power function Q(x) = xa. The case
a = 2 would have special significance, representing a "'two-hit" model, in
which each "hit" is linearly dependent on the number of cell divisions. In this
case, however, wr as a function of age, rr(t), would not necessarily be quadratic
in age. According to equation (1), assuming a renewal process and normality
for F,(x), we would have rr(t) proportional to p.2(t) + a2(t). If, however, ,u(t)
and c2(t) are both linear in t, or if &-2(t) is small relative to p2(t), and ,u(t) is linear
in t, then the relationship between rr and t would also be quadratic.

Theoretically, the functions considered above for Tr(t) increase without limit
as t -* oo. Because Tr(t) is a probability, this is technically unrealistic, since the
upper bound should be 1. Over the range of values considered here (say t < 70),
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in(t) should still be considerably below 1. The parameters of 'rr(t) are estimated
from the observed number/expected number (O/E) ratio (see following section)
and not from actual age-specific incidence data. Hence, absolute age-specific
probabilities are not estimable; only relative probabilities are. Therefore, any
value for rate of increase of probability with age is acceptable, since a suffi-
ciently small (nonestimable) coefficient can be assumed to make the probability
<1 at high age. In calculating the O/E ratio, this coefficient cancels from the
numerator and denominator.

Derivation of the OIE Ratio
Studies of parental ages of new mutations compare the age distribution of

parents of new mutants at the birth of the child with a suitable control-group
parental age distribution (often the population census data). Usually, only a
subset of all cases in a defined population are obtained, so age-specific inci-
dence rates cannot be calculated. Instead, given the total number of cases, E in
a given parental age interval is derived from the control demographics, and the
O/E ratio for each interval is examined (Vogel and Rathenberg 1975). The O/E
ratio is not necessarily directly comparable with the age-specific incidence
curve. We make the following definitions: 'r(i) = the probability of a new
mutant occurring at parental age i; qi = the proportion ofchildren in the control
sample with a parent of age i; Fp = liqj = mean parental age in the control
population; and R(i) = O(i)IE(Q) = the 0 cases with parental age i divided by
the E cases with parental age i from the controls. Then

R~)=qisr(i)/> qjir(J)- ri
qj'NO) qjZqrrrjjR(i) = j= s

qj qj-w(j)

Hence, R(i) is a constant multiple of wr(i), the age-specific incidence function.
Suppose ir(i) is linear in i. Let wr(i) = b + a(i - PO). Then

R(i) = b + a(i - Lo)
> qj[b + a(j - Lo)]
j
=b + a ( - Po)
b + a(FP- Po) b + a(p, - Po)( )

Hence, for R(i), the slope 'y with parental age i is

a
= b + a(ip,- PO)

Here ,uo is defined as some age at which mitotic divisions begin (e.g., puberty,
or no = 13). In general, b > 0, (representing a baseline probability of a new
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mutation up to age duo), so that

a__ _ _ 1

b + a LP - Fo p- FO

For most populations studied, the mean age of fathers, OF 28. Hence, ifwe
take Puo = 13, we get My - 1/15. In other words, if the probability of a new
mutation increases linearly with father's age, then the maximum slope ofR(i) is
1/15. As will be shown later, this value is considerably less than that observed
for a number of syndromes.

If a(i) is exponential, say iT(i) = bea, then

ai ~~ai
R(i) = bea e = ceai

3 qjbe' q3
i I

Hence, the exponential rate of increase (a) for R(i) is the same as that for IT(i).

Expected Mean Parental Age ofNew Mutants
First suppose that the relationship between parental age and the incidence of

new mutations is linear-that is, that 'n(i) = b + a(i - RO). Then the mean age
of parents of new mutations can be calculated as

3 iqi[b + a(i - i1o)] -,p[b +a(.P - o)] + crp2
ILA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

3 qi[b + a(i- Wo)] b + a(Rp - Ixo)

FP (b + a(jLp - jLo)

Here we again assume that ,Lo is the age of puberty. Assuming that b > 0, we
have

RPA _< + 1 2 (4)
(pp - 5o) (

A special case of this relationship (b = >t = 0) was first observed by Penrose
(see Smith 1972). According to formula (4), a linear model imposes a maximal
increase in mean age of parents of new mutants, one that is independent of b,
namely,

Up2

(tP- P'o)
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Assuming that IuO = 13, the value of

UFp2
(Lp- t'o)

ranges from -2.5 to 3.5 for most populations. As will be seen later, many
syndromes show an increase in parental age far greater than this, putting the
linear model into doubt. It is also straightforward to show that, for a linear
model, the variance of parental age of new mutants is given by the formula

2 2_ [ ~aap2 ]2
T2-U2 - [b~a(lip- tLo)]

When b = 0 or is small compared to a, we have

2 p2 [ 2(5)
(P - Ro

For an exponential model for ir(i)-for example, ii(i) = ceai-the amount of
increase in mean parental age depends on the value of a and is unlimited in its
magnitude.

Paternal versus Maternal Age
The usual method for examining whether the parental age effect is attribut-

able to fathers or mothers is partial correlations (Penrose 1933). Smith (1972)
gave formulas to estimate simultaneously the effect of father's age, mother's
age, and birth order on the incidence of new mutation. These formulas have
been used extensively by investigators examining parental age effects. The
Smith formula depends on the assumption of multivariate normality for the
distribution of paternal age, maternal age, and birth order in the underlying
population and an exponential increase in incidence with parental age. Let fF
and UF2 be the mean and variance, respectively, of paternal age and fM and CM2
the mean and variance, respectively, for maternal age and p be the correlation
between paternal and maternal age in the general population. Suppose that the
effect of age is due entirely to fathers and that the incidence of new mutation is
exponential with father's age-that is, that rr(i) = ceaFi. Then, assuming
bivariate normality for paternal and maternal age, Smith showed that the inci-
dence of new mutations would also increase exponentially with maternal age
with rate of increase aM = IFMaF, where IFM = PcrF/lM is the standard regres-
sion coefficient of paternal age on maternal age. It is important to note here that
although the direct effect may be due to paternal age, the exponential rate of
increase in the mother (aM) could potentially be equal to or greater than that in
the father (ap), depending on the relative magnitudes of p, UF, and UM. Smith
also showed that the expected increase in maternal age could be written in
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terms of the increase in paternal age and the regression of paternal on maternal
age, as

F1M FM =PMF A1F RAF F

The above arguments continue to apply if the direct effect is on mothers rather
than on fathers, with subscripts F and M reversed.

Unfortunately, the bivariate-normality assumption for paternal and maternal
ages is unwarranted. In most populations, the maternal age distribution may
approximate normality; however, the paternal age distribution is positively
skewed and in fact shows closer correspondence to a square-root normal distri-
bution. This may be due, in large part, to the biological limitations placed on
maternal age, limitations that do not exist for paternal age. In addition, the
correlation between paternal and maternal age in general decreases with in-
creasing paternal age, so that, for example, mean age of wives of fathers of age
45 is not much different from that of wives of fathers of age 55. Also, the
conditional variance of maternal age given paternal age is not constant but
increases with paternal age.
What is the impact of lack of bivariate normality on conclusions about the

relative contribution of paternal and maternal age to the incidence of new
mutations? The bivariate-normality assumption will lead to an overestimate of
the expected maternal age for a given paternal age when paternal age is high;
hence, the effect of maternal age will be underestimated. The extent of under-
estimation will depend on the magnitude of the parental age effect. For muta-
tions with a modest parental age effect (exponential rate of increase a is small),
the discrepancy is minor; when a large parental age effect (large a value) is
present, the discrepancy will be large; for example, we have examined the
discrepancy between expected maternal age assuming bivariate normality and
using the direct bivariate distribution of parental age for the United States
censuses from 1960 to 1980. Table 1 shows that when a = .05 the discrepancy
(maternal age assuming bivariate normality minus true value) is on the order of
0.1 years; when a = . 10, the discrepancy is -0.55 years; and when a = .15, the
discrepancy is - 1.52 years. Therefore, especially when a is large, the bivariate-
normality assumption is inadequate for assessing the role of paternal and ma-
ternal ages, and only the direct bivariate parental age distribution should be
used.

DATA

New Cases
We include in our analysis 68 new cases of fresh mutations-26 with Apert

syndrome, 22 with Crouzon syndrome, and 20 with Pfeiffer syndrome. All
cases were evaluated at the New York University Institute for Reconstructive
Plastic Surgery (by J.G.M.) and at the Genetics Clinic (by E.W.R. and
M.M.W.), and positive family history was definitively ruled out. Any question-
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TABLE 1

DIFFERENCE BETWEEN MATERNAL AGES PREDICTED FROM
(1) BIVARIATE NORMAL ASSUMPTION AND (2) ACTUAL

BIVARIATE DISTRIBUTION FOR PATERNAL EFFECT MODEL:
1950-80 U.S. CENSUSES

a

CENSUS YEAR 0.05 0.10 0.15

1950 .................. 0.10 0.51 1.38
1960 .................. 0.10 0.55 1.54
1970 .................. 0.08 0.50 1.49
1980 .................. 0.12 0.62 1.79

able cases were not included. For all cases, both paternal and maternal ages at
birth of the child were known.
To obtain an appropriate control population for our three groups of cases, we

determined the year of birth of each of our cases and used the bivariate parental
age distribution for that year (in 5-year intervals) from the U.S. census. A
relatively equal number of patients were born in the years from 1960 to the
present and relatively fewer between 1950 and 1960. The control bivariate
parental age distribution was obtained by weighting the appropriate census
year by the proportion of cases born in that year (in 5-year intervals). This
approach is similar to that used by Riccardi et al. (1984).

Literature Cases
We have also included in our analysis all cases reported in the literature of

new mutations for autosomal dominant disorders. We have included only those
studies that describe an appropriate control population or how to obtain such a
population for their cases. Unfortunately, this has led to the exclusion of a few
of the classical studies; however, we decided that an adequate control group
was a prerequisite for these analyses. In 1975, Jones et al. (1975) summarized
much of the literature on parental age and new mutations; however, they gave
only mean and SDs (not actual ages) for the various syndromes. In doing our
analyses we have eliminated overlap between original reports and the summary
of Jones et al. (1975). For control data for retinoblastoma, Pellie et al. (1973)
used the French national census, which gives paternal and maternal age distri-
butions separately. We have used the bivariate Australian census data for 1953,
because these data had mean maternal and paternal ages identical to those in
the French census data.
We have only used studies that included >10 cases. The list of studies and

the corresponding control populations used are given in table 2. It is impossible
to assume that the control samples are precisely matched to the cases in terms
of demographics. However, we believe that no significant systematic distortion
due to use of inappropriate control samples has occurred in our results.
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TABLE 2

STUDIES USED IN THE ANALYSIS OF PARENTAL AGE AND NEW MUTATION, BY SYNDROME

Syndrome and Source nf nm Controls

AP:
Murdoch et al. 1970 .............

Stevenson 1957 .................

AD:
Jones et al. 1975 ................

Apert:
Present study ...................

Cohen 1975 .....................

Blank 1960 .....................

BR:
Pellie et al. 1973 .................

BCN:
Jones et al. 1975 ................

CCD:
Jones et al. 1975 ................

Crouzon:
Present study ...................

Jones et al. 1975 ................

FOP:
Rogers and Chase 1979 ..........

Connor and Evans 1979 ..........

Tunte et al. 1967 ................

Marfan:
Murdoch et al. 1972 .............

ME:
Jones et al. 1975 ................

NF:
Riccardi et al. 1984 ..............

Sergeyev 1975 ..................
ODD:
Jones et al. 1975 ................

Pfeiffer:
Present study ...................

Progeria:
Jones et al. 1975 ................

Sotos:
Jones et al. 1975 ................

T-C:
Jones et al. 1975 ................

Waardenburg:
Jones et al. 1975 ................

106
46

11

26
48
37

155

12

32

22
38

38
33
39

23

14

187
56

11

20

18

50

98

22

107
46

11

26
48
37

155

12

32

22
38

40
33
38

23

14

171
56

11

20

18

50

98

22

U.S. census, weighted by year
Hospital-matched controls

U.S. census, 1966

U.S. census, weighted by year
U.S. census, weighted by year
Australian census, 1953

Australian census, 1953

U.S. census, 1955

U.S. census, 1966

U.S. census, weighted by year
U.S. census, 1966

U.S. census, 1960
Australian census, 1953
French census, weighted by year

U.S. census, 1955

U.S. census, 1966

U.S. census, weighted by year
Moscow census, weighted by year

U.S. census, 1966

U.S. census, weighted by year

U.S. census, 1966

U.S. census, 1966

U.S. census, 1966

U.S. census, 1955

NOTE.-AP = achondroplasia; AD = acrodysostosis; BR = bilateral retinoblastoma; BCN = basal cell
nevus; CCD = cleidocranial dysostosis; FOP = fibrodysplasia ossificans progressiva (or myositis ossificans);
ME = multiple exostoses; NF = neurofibromatosis; ODD = oculo-dento-digital; and T-C = Treacher-Collins.



METHODS
Linear Model
We first compared the mean paternal age predicted by a linear model with

that observed in each of the data sets. We did the same for maternal age,
assuming that the effect was related to maternal age directly rather than related
via correlation with paternal age.
To obtain the predicted paternal ages, we applied formula (4) to the control

population, assuming that a = 0 and iuo = 13 (the age of puberty). This ap-
proach is conservative: a value of a > 0 or a value of duo < 13 (e.g., tuo = 0)
would give smaller predicted mean parental ages. Hence, any values significant
under these assumptions would also be significant under any alternative condi-
tions. Significance was assessed by means of a Z-test, assuming that

0_ A

has an approximate normal distribution with mean 0 and variance 1, where ,up0
is the observed parental age, R A is the mean age predicted by the linear model,
Tp is the SD of parental age predicted from the linear model applied to the
control population (see eq. [5]), and n is sample size.

OlE Ratios
The control distribution of parental ages was used to calculate the E parents

in a given age interval. For those studies that provided the actual parental ages,
we calculated and plotted the O/E ratio of parents within each 5-year age
interval. For multiple data sets on the same disorder, we combined E and 0,
and calculated a total O/E ratio. This analysis was performed for fathers and
mothers separately.

Exponential Model
We examined an exponential model for each sex separately. We fit an expo-

nential curve and estimated a by using maximum likelihood as follows:
The probability that a father of a new mutant will be age i is

q~ai ,/> ~aiqje /Eqje

Suppose that ri fathers are observed to be age i. Then the likelihood can be
written, aside from a constant, as

L=]7Jq=eai ri
( qjeai

qj
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Thus,

lnL = aT - Rln qjeai)

where

R = rj andT= jrj
i i

alnL TR '
aa> dqjea

Hence, the maximum-likelihood estimate d is obtained by solving

t jqje i1
= TIR ( 110 the observed parental mean age),

Eqjeai

which was done by iteration.
The variance of d was estimated by calculating

( alnL) 2

Analysis of mothers was performed in a similar fashion.
Note that the maximum-likelihood estimator d depends only on the observed

mean and that the information depends only on the mean and sample size R.
For those studies that provided actual parental age distributions, we classified
ages into 5-year intervals and assessed goodness-of-fit of the exponential model
by a X2-test.

Heterogeneity among Syndromes and Studies
Heterogeneity of the estimated a value among different studies of the same

syndrome and among different syndromes was assessed as follows. For each
study, we assumed that the estimate d was approximately normally distributed
with its calculated SE. Comparing n studies, we first calculated a weighted
average a value as

n n

a Eajlse2) I

(E IS,2)
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where i ranges over the n studies, and a, and si are the estimate of a and its SE
in the ith study, respectively. Heterogeneity among the n studies was then
assessed by calculating

X2 = ida-
which has a x2 distribution with n - 1 df under the null hypothesis of no
heterogeneity.

If heterogeneity was significant among different syndromes, then we wished
to determine the minimum number of intrinsic a values that were necessary to
account for the variation. Therefore, we assumed a heterogeneity model
whereby there are m intrinsic a values, for which the jth one has value Aj and
occurs among a proportion pj of syndromes; note that

m

~pji
j=1

The likelihood of the n observed a values (a, . . , a") is then given by

n m

L= 171 [E 1 e- 1/2(aiAjhai)2]
i=1 j= 1 V2,mcri

The likelihood and estimates ofpj and Aj were calculated for m = 1, 2,. At
each stage a likelihood-ratio test was performed to determine whether the
inclusion of an additional A value significantly improved the likelihood. In each
case, since two additional parameters (p and A) were estimated, minus twice
the log-likelihood difference has a x2 distribution with 2 df. In this way, the
minimum number of A values necessary to explain the observed variation
among the estimated a values was assessed.

Mutation-Heterogeneity Model
We also examined a mutation-heterogeneity model, as follows. Suppose that

some mutations are exponentially dependent on paternal age, while the remain-
der are independent of paternal age. Then the incidence curve ofnew mutations
with paternal age has the form ii(i) = d + ceai, where d is the age-independent
incidence of new mutations. In fact, d and c are not separately estimable since
we do not have absolute incidence rates. What we can estimate is a and the
parameter cid (equivalent to fixing d = 1). This type of model would be appro-
priate if only a subset of mutations were exponentially related to paternal age
(e.g., mothers contribute some age-independent new mutations). According to
this model, the probability that a father of a new mutant is of age i is

qi(l + ceai)

2 qj(l + ceai)
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The likelihood of the observed paternal ages can be written analogously to the
simple exponential model described above, and maximum-likelihood estimates
of a and c can be obtained.

Paternal versus Maternal Age
To assess the contribution of paternal and maternal age to the incidence of

new mutations, we used a general mixed-effect exponential model. In this
model we assumed that mutations can occur in either parent and that the prior
probability of a new mutant occurring in the father is some parameter p, while
the remainder (1 - p) occur in the mother. We assumed the same exponential
relationship (i.e., ir(i) = ceai) between incidence of new mutation ir and age i
for both sexes. Therefore, according to this model, the observed paternal age
distribution is determined partly by direct exponential effect on paternal age
and partly through correlation with increased maternal age. A comparable
statement applies to the maternal age distribution.
Three important submodels correspond to p = 1 (a paternal effect model

with mutation occurring only in males), p = 0 (a maternal effect model with
mutation occurring only in females), and p = .5 (mutation occuring with equal
prior probability in both sexes). Of course, other values of p are possible.
According to the mixed-effect model, the mean paternal and maternal ages

can be calculated as follows. Define qu as the proportion of control offspring
with a father of age i and a mother of agej. Then, according to the mixed-effect
model, the probability of observing that a father of a new mutant has age i is

Eque yE, quje

Therefore, the expected mean paternal age is

Ziquea iqu1ea
RFF = P 0 < + (lp) k )

Z queaiIqiea

An analogous formula can be derived for ,MuE.
To test the three models described above (p = 1.0, .5, and 0), we calculated

the value of a that coincided with the observed mean paternal age for that
syndrome and then determined the corresponding expected mean age for
mothers. The observed versus expected mean maternal ages were compared by
means of a Z-test as described above for the linear model. In this case, how-
ever, the expected conditional SD (mother given father) was used. The condi-
tional SD is not constant but, in general, increases with paternal age. There-
fore, we calculated the expected conditional SD directly from the control
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population, assuming an exponential model for the observed mean paternal
age. We also estimated the values of a and p that yielded simultaneously the
observed mean paternal and maternal ages.
When necessary, all likelihood maximizations were obtained with the com-

puter program MAXLIK (Kaplan and Elston 1972).

RESULTS

Linear Model
The observed parental ages and SDs from 24 studies are given in table 3.

Parental ages predicted from the linear model assuming Puo = 13 and a = 0 are
also given in table 3, along with the corresponding Z-statistic for each. The
predicted maternal ages are based on a direct linear model applied to mothers
(i.e., they are not determined through correlation with father's ages). Predicted
maternal ages would be correspondingly lower assuming a linear model applied
to fathers. As can be seen in the table, for 19 of the 24 studies, the linear model
underpredicts mean paternal age. In 10 of the samples, the deviation is signifi-
cant (P < .05). Combining evidence across studies, we can also reject a linear
model for fibrodysplasia ossificans progressiva (Z = 2.03, P < .05). Among
mothers, there is also a tendency for underprediction by a linear model; in 14 of
the 23 studies, mean maternal age is underpredicted. In four of these studies the
difference is significant; however, in three studies maternal age is significantly
overpredicted. These results are conservative; for example, if we assume that
duo = 0 rather than that slo = 13, then mean paternal age is underpredicted in all
studies and the difference is significant in 16 of 24 of them. We conclude that a
linear model relating incidence to paternal age is inadequate for explaining the
parental age effect for the majority of syndromes.

OIE Ratios
Rejection of the linear model is confirmed in the examination of the O/E

ratios for those studies that included parental age distributions. The E parents
in 5-year age intervals calculated from the control sample, the 0 parents, and
thus the O/E ratio are given in table 4. Fathers and mothers are presented
separately. Data were available for seven syndromes: Apert, fibrodysplasia
ossificans progressiva, neurofibromatosis, achondroplasia, Marfan, Pfeiffer,
and Crouzon. The O/E ratios are also plotted in figures 1 (fathers) and 2
(mothers). In the Introduction we showed that under a linear model the max-
imum slope that the curve can achieve is l/G(,p - puo) - 1/15. Hence, if we
assume a value of O/E near 0 at age 17, then the maximum possible value at age
47 would be 2.0 and that at age 52 would be 2.33. For all of the syndromes
plotted in figure 1, the observed O/E values at ages 47 and 52 are greater than
those consistent with a linear model (only neurofibromatosis is possibly com-
patible with a linear model). Again, these conclusions are conservative; if we
assume that Ruo < 13 (e.g., Ruo = 0), then discrepancies with a linear model are
greater. For mothers, a linear function also appears incompatible with the
observed curves, with the possible exceptions of neurofibromatosis and
Crouzon syndrome.
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FIG. 1.-Relationship between O/E ratio and paternal age for seven syndromes
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SPONTANEOUS MUTATION AND PARENTAL AGE

Exponential Model
Results of fitting an exponential model separately for fathers and mothers are

given in table 5. The estimate of a and its SE are given for each study sepa-
rately. For multiple samples of the same syndrome, combined estimates are
also given, as well as a X2-test of heterogeneity among samples. In no case was
there significant heterogeneity among studies of the same syndrome.

In figures 1 and 2 the best-fitting exponential curve is plotted along with the
observed O/E ratio. Also, in table 4, the predicted (P) number of parents to fall
in each 5-year age interval for the exponential model was calculated, and a x2
goodness-of-fit was performed. In general, the exponential model appears to
give an adequate fit to most data. However, there are a couple of observations
worth noting. First, for Apert syndrome, there appears to be an excess of
observed fathers between ages 35 and 39 and a deficit of fathers between ages
40 and 44; in fact, the observed curve for O/E reaches an initial peak at age 37
and drops at age 42 before rising again at age 47 (fig. 1). This deviation from an
exponential model is significant by the x2 goodness-of-fit test (P < .025). It is
important to note that this pattern was observed in all three studies contribut-
ing to the Apert total (see table 4). In all three cases, the O/E ratio peaks at age
37, drops at age 42, and rises again at age 47.
Except that the overall rate of increase is lower than in Apert syndrome, an

identical pattern is observed for neurofibromatosis fathers: O/E peaks at age
37, drops at age 42, and rises again at age 47. Again, this pattern leads to a
rejection of an exponential model by x2 goodness-of-fit (P <. 05).
For the remaining five syndromes there is a similar pattern, except that it

occurs 5 years earlier and in no case leads to rejection of an exponential model.
For Marfan and Crouzon syndromes, there is an initial peak at age 32 and
a drop at age 37 before another rise at age 47. For the remaining three
syndromes, there is a plateau from age 32 to age 37 before another increase
at age 47.
Among mothers, the only significant deviation between expected and ob-

served ages is for achondroplasia, for which there is an observed deficiency of
mothers >40 years of age. The same deficiency appears to exist for Apert and
Marfan syndromes (although it is not significant). This observation is, in some
sense, not surprising. If a major effect is due to an exponential model in fathers,
then we would expect to see less than an exponential rate of increase in
mothers, particularly at more advanced ages, when the correlation between
fathers' and mothers' ages diminishes. An exponential curve in mothers would
only result if the bivariate distribution of parental ages were truly normal.

Heterogeneity among Syndromes
Table 5 demonstrates quite a range of estimates of a, both in fathers (.025-

.113) and mothers (.015-.125). We performed a X2-test of heterogeneity for the
16 syndromes listed in table 5. For both fathers and mothers, heterogeneity
among syndromes was significant (X216 = 45.91, P < .001 for fathers; and X216
= 42.37, P = <.001 for mothers).
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TABLE 5

RESULTS OF FITTING EXPONENTIAL MODEL

d (SE)

SYNDROME AND SOURCE Paternal Maternal

Apert:
Present study ............... .................... 0.111(0.021) 0.138(0.029)
Blank 1960 . .................................... 0.094(0.020) 0.104(0.026)
Cohen 1975 . .................................... 0.089(0.016) 0.083(0.021)

Total ......................................... 0.095(0.011) 0.101(0.014)
Heterogeneity x2 (df = 2) ....... ............. 0.71 2.36

FOP:
Connor and Evans 1979 ......... ................. 0.073(0.022) 0.084(0.028)
Rogers and Chase 1979 ......... ................. 0.058(0.019) 0.052(0.024)
Tunte et al. 1967 ............ .................... 0.097(0.026) 0.077(0.032)
Tunte et al. 1967 ............ .................... 0.068(0.032) 0.040(0.040)

Total ......................................... 0.071(0.012) 0.063(0.015)
Heterogeneity x2 (df = 3) ....... ............. 1.48 1.28

AP:
Murdoch et al. 1970 .......... ................... 0.075(0.011) 0.093(0.014)
Stevenson 1957 ............ ..................... 0.109(0.017) 0.090(0.025)

Total ......................................... 0.084(0.009) 0.091(0.012)
Heterogeneity x2 (df = 1) ....... ............. 2.82 0.01

NF:
Riccardi et al. 1984 ............ .................. 0.047(0.009)
Sergeyev 1975 .............. .................... 0.040(0.017) 0.026(0.020)

Total ......................................... 0.045(0.008)
Heterogeneity x2 (df = 1) .................. 0.13

Crouzon:
Present study ............... .................... 0.059(0.026) 0.053(0.034)
Jones et al. 1975 ............ .................... 0.081(0.018) 0.074(0.023)

Total ......................................... 0.073(0.015) 0.067(0.019)
Heterogeneity x2 (df = 1) ....... ............. 0.29 0.26

Marfan:
Murdoch et al. 1972 .......... ................... 0.103(0.023) 0.077(0.032)

Pfeiffer:
Present study .............. ..................... 0.113(0.024) 0.108(0.034)

BCN:
Jones et al. 1975 ........... ..................... 0.104(0.031) 0.125(0.044)

Progeria:
Jones et al. 1975 ............ .................... 0.083(0.026) 0.097(0.033)

Waardenburg:
Jones et al. 1975 ............ .................... 0.078(0.024) 0.097(0.032)

CCD:
Jones et al. 1975 ............ .................... 0.071(0.020) 0.099(0.025)

AD:
Jones et al. 1975 ............ .................... 0.069(0.034) 0.042(0.045)

ODD:
Jones et al. 1975 ............ .................... 0.060(0.035) 0.042(0.045)

Sotos:
Jones et al. 1975 ............ .................... 0.052(0.017) 0.079(0.020)

T-C:
Jones et al. 1975 ............ .................... 0.045(0.012) 0.040(0.015)

ME:
Jones et al. 1975 ............ .................... 0.035(0.033) 0.019(0.042)

BR:
Pelie et al. 1973 ............ ..................... 0.025(0.011) 0.015(0.013)
Total heterogeneity among syndromes X216 ..... .... 45.91* 42.37*

NOTE.-Syndrome acronyms are as in table 2.
* P < .001.



SPONTANEOUS MUTATION AND PARENTAL AGE

TABLE 6

RESULTS OF ANALYSIS OF HETEROGENEITY AMONG SYNDROMES

PATERNAL MATERNAL

PARAMETER 1-A Model 2-A Model 1-A Model 2-A Model

Pi ........... 1.0 0.321(0.153) 1.0 0.285(0.154)
Al ........... 0.0644(0.0036) 0.0418(0.0060) 0.0654(0.0049) 0.0297(0.0108)
A2 ........... ... 0.0827(0.0052) ... 0.0841(0.0069)
-2lnL ......... 90.27 110.94 83.90 100.68

To determine the minimum number of a's necessary to account for the ob-
served variation among syndromes, we applied the mixture analysis described
above in Methods. The results are given in table 6. For fathers, the model
assuming two exponential parameters was significantly superior to the model
assuming one parameter (X22 = 20.67, P < .001). However, a model allowing
for three exponential parameters converged to the two-parameter model.
Hence, the variation among syndromes could be explained by two parameters
(with values .042 and .083, respectively). Among mothers, the results were
similar. A two-parameter model was significantly superior to a single-parame-
ter model (X22 = 16.78, P = <.001); the three-parameter model offered no
improvement over the two-parameter model.
The majority of syndromes-68% in males and 71% in females-are esti-

mated to belong to the high-parameter group. This difference between males
and females is not significant. Interestingly, the estimate of the larger exponen-
tial parameter is nearly double the value of the smaller exponential parameter
in males. It is also interesting that the larger A value is greater in mothers than
in fathers, whereas the smaller A value is greater in fathers than in mothers.

Mutation-Heterogeneity Analysis
Using maximum likelihood, we applied the mutation-heterogeneity model

(i.e., *T(i) = d + cea'), to each of the seven syndromes listed in table 4. In every
case, the model converged to a pure exponential model (i.e., d = 0). Hence, on
the basis of this analysis, there is little evidence for a sizable subset of parental
age-unrelated cases for any of the syndromes. This result is not surprising,
considering the curves in figures 1 and 2. If there were a subset of age-
independent cases, then the observed O/E curves would be relatively flatter at
younger ages and closer to exponential at older ages-a pattern seen, for
example, for some trisomies vis-A-vis maternal age (Risch et al. 1986). Our
inability to detect age-unrelated cases in the present study cannot be attributed
to small sample size, at least in the cases of Apert syndrome and achondro-
plasia; for example, for both of these syndromes, any model specifying >20%
age-independent cases would be rejected by a likelihood-ratio criterion.
Paternal versus Maternal Age
The results of the analysis of the paternal effect (p = 1), maternal effect (p =

0), and mixed-effect (p = .5) models are given in table 7. The estimate of a and

241



0 00 0ko eno o %n m Q VDo v CD WI In t-oi

sQ 10 rn Cq CD V eq t-M} eqmf e4 as - V e4 00 m 00 NOC,; C'Cfio 60^s 0o 0u 000£oto . 0- t F

F > ^ - t ^vE - ^ t - o - b N - o e -WI WI

0 en
O b~~~~~t-en ^oo %neq % W) qm00 )i %n

Pw oCDo off MAf 0o 00oo 0rv o00o - t- 0̂ t-0

N~~~~~~~ew000-O-O-00 -0 00---W 0

CD 2~~~~~~~~~~~~~~~~~~~~C
we oa ffi%n o %F oo W V_) V 00 00_v(4o

>~~~~~~0 6 C50m.co .._ . . . .t-. ^-t.~~~~~~~~~0cyoAo__ooo__o 06t..onooo.:noo0o6 _

Z~~~~~~~~~ Ch m%nO*ff >FO t- ON W)%0 v)tO w3 oF00-oX-ffiffi0XXFOFOkni S en>e_ ">^^^>>>>>^>>>>>>>>>>"~0D 0 CQ ~~~~~~

E ~ ~ ~ C
. . . . . . .fi ..o~u

O~~~~G :::::::::::::
2 ::::::::::::::::::::::-,,
< :::::::::::::::::::L:_ . . . . . . . . . . . . . . . e

Z ......................~~V ..C
O~~~~~~~z t :g...... ... ... ... ...
> ~ ~~~~ ~~ 16:::::::::::::::::::

= ~ ~~~~ 44S t133 M.qZSuGS iZOMR-



SPONTANEOUS MUTATION AND PARENTAL AGE

the expected mean maternal age (given the observed paternal age) are listed,
along with corresponding Z-scores. We have performed all statistical analyses
both including and excluding the study of Riccardi et al. (1984). In that study,
the authors calculated a mean paternal age of 32.8 and a mean maternal age of
27.4. They also presented the distribution, in 5-year intervals, of paternal age.
From that distribution, we calculated a mean paternal age of 32.3, 0.5 years less
than that reported by Riccardi et al. (1984). No age distribution was presented
for mothers. Because of this uncertainty-in addition to the fact that that study
has the largest number of cases (thereby tending to dominate our analyses)-
we decided to perform all analyses with and without that study. To be conser-
vative, we used the mean paternal age reported by the authors, 32.8.

Overall, the paternal effect model appears to underestimate observed mean
maternal ages. Considering all syndromes, the total Z-score,

23

is 1.40, which corresponds to P = .08. Excluding the study of Riccardi et al.
(1984), total Z = 1.98, for which P = .02. The maternal effect model clearly
overpredicts maternal ages given the observed paternal ages, and this model
can be rejected overall (Z = - 13.04, P < .001). The mixed-effect model, with
p = .5, also tends to overestimate mean maternal ages (Z = -2.56, P = .005;
Z = - 1.73, P = .04 without the Riccardi et al. [1984] study). Considering all
syndromes, we also calculated a median value for p from the last column in
table 7; this turns out to be .85.
We also divided the syndromes into two groups on the basis of their esti-

mated a values from the paternal effect model. We denote as group 1 those
syndromes with the higher A value, and as group 2 those with the lower A
value. Using the observed A value and its SE for a given syndrome, we
classified a syndrome in group 1 if its posterior probability of being in that
group was >.5; otherwise, it was placed in group 2. Using this procedure, we
placed the following syndromes in group 1: acrodysostosis, achondroplasia,
Apert, basal cell nevus, cleidocranial dysostosis, Crouzon, fibrodysplasia
ossificans progressiva, Marfan, oculo-dento-digital, Pfeiffer, Progeria, and
Waardenburg. The group 2 syndromes were as follows: multiple exostoses,
neurofibromatosis, retinoblastoma, Sotos, and Treacher-Collins. The total Z-
score for the paternal effect model for group 1 syndromes was 1.98 (P = .024),
whereas for group 2 syndromes Z =-0.56. Hence, the paternal effect model is
less compatible with group 1 syndromes than with group 2 syndromes. Within
the mixed-effect model (p = .5), Z = - 1.31 (P = .10) for group 1, whereas
Z = -2.72 (P = .003) for group 2. The median estimated p value for the group
1 syndromes is 0.7, whereas the median value for group 2 syndromes is 1.0.
These results suggest the possibility that syndromes with smaller a values may
result from mutations primarily of paternal origin, whereas those with larger a
values may contain a significant proportion that are of maternal origin.
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TABLE 8

EXPECTED PARENTAL AGE DIFFERENCE FOR THE MIXED-EFFECT MODEL FROM THE 1955 U.S. CENSUS

p = 1.0 p = .5 p =O

PATERNAL AGE LF FPM a fF - FM a ILF - M a

30 ................... 3.5 .002 3.5 .002 3.5 .002
31 ................... 3.8 .020 3.6 .024 3.3 .031
32 ................... 4.2 .037 3.9 .044 3.2 .059
33 ................... 4.6 .053 4.2 .062 3.1 .084
34 ................... 5.1 .067 4.5 .079 3.0 .110
35 ................... 5.5 .080 4.9 .094 2.9 .135
36 ................... 6.0 .093 5.3 .107 2.8 .160

We note here that although it is easy to distinguish between the paternal
effect model and the maternal effect model, it is considerably more difficult to
distinguish between a paternal effect model (p = 1) and a mixed-effect model
(p = .5). The reason for this can be seen in table 8. For a given observed
paternal age, the expected difference between mean paternal and maternal ages
is quite different for a paternal effect model versus a maternal effect model,
especially at high parental ages. However, the difference between a paternal
effect model and the mixed-effect model is quite small, even at high ages; for
example, for an observed mean paternal age of 36, the expected difference
between the predicted differences for the two models is only 0.7 years.

DISCUSSION

What do these results tell us about the process of spontaneous mutation in
humans and its relationship with parental age? Two conclusions are clear: (1)
Among dominant mutations, there is heterogeneity in the relationship between
mutation incidence and parental age. The simplest model compatible with the
data specifies two distinct groups of mutation with different rates of increase.
(2) The group with higher rate of increase is not compatible with a linear model
relating incidence to age; the group with lower rate of increase may be compat-
ible with a linear model; however, it is also consistent with an exponential
model. In this analysis, the larger percentage of syndromes belongs to the high-
rate-of-increase group. These results confirm statistically an earlier (Vogel
1964) impression of heterogeneity.
The linear model for males assumes that the rate of spermatogenesis is con-

stant with age. This assumption may or may not be true. It has been suggested
that the rate of spermatogenesis may actually decline with increasing age; on
the other hand, the possibility also exists that the decrease represents a diminu-
tion in the number of dividing stem cells and not in the rate of division among
surviving ones (Vogel and Rathenberg 1975).

In the high-rate group, the evidence for a strict paternal age effect and no
maternal age effect is not compelling. The data are equally (or more) consistent
with an exponential model in which both sexes show an equal age effect. In the
mixed-effect model analysis, the median estimated value of p (prior probability
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of mutation in males) was .7. In the group with a low rate of increase, the
median p value was 1.0. This group appears to be compatible with mutation
occurring primarily in males. In the heterogeneity analysis, we assumed that
syndromes belonged to one of two groups, each with a unique a value. In other
words, we assumed that the prior distribution of a values was discrete, taking
on a finite number of possible values. We also analyzed the data assuming a
normal prior distribution (i.e., continuous) for a values. In this case, there are
two parameters to estimate, the prior mean and variance. As expected, the
prior variance was estimated as significantly greater than zero, owing to
heterogeneity among syndromes (for both males and females). The log likeli-
hood for this model was 53.71 in males and 49.24 in females. These values are
less than those for the 2-A models; however, a formal statistical comparison is
not possible. Hence, while two distinct groups of mutations with corresponding
A values is a reasonable conjecture, the possibility of a continuity ofA values
among syndromes cannot be ruled out.

In performing the analyses on paternal versus maternal age, we assumed an
exponential model. Assuming some type of model was necessary for those
syndromes for which we only had mean parental ages. However, for those
studies that gave the list of parental ages, it is possible to calculate exactly the
expected maternal ages given the observed paternal ages from the control
bivariate age distribution. As a check, we compared, when possible, the ex-
pected mean maternal ages derived directly from the paternal ages with those
obtained by assuming the exponential model. In general, the differences were
small, with an average difference <0.1 years. Hence, the results of this analysis
are unlikely to have been much influenced by the exponential assumption.
For those syndromes for which we had distributional data on parental ages,

there was no evidence for admixture of exponentially age-dependent and age-
independent cases. If one were to postulate that both father and mother con-
tribute substantially to the mutation load for these syndromes, then the mater-
nal cases must also increase in frequency with age, as do the paternal cases.
For the group of syndromes with a high rate of increase with age, the model
based purely on paternal ages is rejected. Therefore, the conclusion most com-
patible with this group of syndromes is that fathers and mothers both contribute
mutations (on average 70% and 30%, respectively) and that the incidence in-
creases with age in both sexes. Although we assumed the same rate of increase
with age in males and females in our modeling, the rates may in fact be differ-
ent. Under the circumstances, however, such differences would be impossible
to detect. Also, these results do not rule out the possibility of etiological
heterogeneity of mutation for some of the syndromes not examined. For ex-
ample, molecular heterogeneity of the mutational defect of a number of syn-
dromes (e.g., retinoblastoma, Duchenne muscular dystrophy, and thalassemia)
has been identified.
There appears to be no relationship between rate of increase of mutation

incidence with parental age and absolute mutation rate for a given syndrome.
For example, neurofibromatosis has a high overall mutation rate (l0-4) but a
low rate of increase with age. Treacher-Collins syndrome has a low overall
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mutation rate and a low rate of increase. Achondroplasia has a higher overall
mutation rate and a high rate of increase, whereas Apert and Marfan syn-
dromes have high rates of increase but lower overall mutation rates (Vogel and
Rathenberg 1975). Hence, absolute mutation rate does not seem to offer addi-
tional insights into the mechanism of mutation and relationship to parental age.
There also appears to be no clear syndrome-type pattern distinguishing the
high- and low-rate groups.
The particular patterns observed for Apert syndrome and neurofibroma-

tosis-namely, the early peak at age 37 and the drop at age 42-are difficult to
explain, especially according to a copy-error model or any other model that
assumes accumulation of mutation in stem cells with age during sper-
matogenesis. According to any such model, the curve would have to be mono-
tonically nondecreasing. Although for both syndromes a simple continuous
model was rejected by a x2 goodness-of-fit test, the observed pattern might be
artifactual. Arguing against this, however, is the identical pattern observed in
all three studies of Apert syndrome. The other syndromes did not have the
exact same pattern, but they did tend to show, relative to what would be
expected, an excess of cases at age 32 and a deficit at age 37, although differ-
ences were never significant. One might conjecture (1) that stem cells divide at
different rates, with those undergoing more divisions dying earlier, or (2) that a
fresh collection of undivided stem cells is recruited in early middle age. How-
ever, if this were the case, we would expect the different types of mutation to
show a similar pattern. Also, differences cannot be explained by division of
syndromes into high-rate-of-increase and low-rate-of-increase groups; Apert
syndrome shows a high rate of increase with paternal age, whereas neuro-
fibromatosis shows a low rate of increase.

It may well be the case that all dominant syndromes show at least some
parental age effect; for example, it was originally thought that sporadic cases of
bilateral retinoblastoma and osteogenesis imperfecta did not increase with pa-
rental age. However, the most recent and most extensive reports on these two
syndromes (Pellie et al. 1973; Carothers et al. 1986) do indicate a minor but
significant parental age effect.
Although in our analysis we employed an exponential model, which gener-

ally gave an acceptable fit to the data, this does not imply that the exponential
model is the only possible acceptable model. For example, a power model
[ir(t) = t']-was fit to those studies that reported complete data. A median
value of a = 2.0 was obtained for the high-rate-of-increase group. Hence, at
this stage, the heterogeneity in the data may also be compatible with a one-step
or two-step model of mutagenesis.

In conclusion, our analyses confirm skepticism regarding a simple copy-error
model as being the primary source of spontaneous mutation in humans. The
majority of syndromes examined showed a significantly greater than linear
increase with parental age. Also, the evidence appears to be against increased
age in fathers as the only source of the parental age effect, and the patterns of
some curves are inconsistent with the monotone increase required by a muta-
tion-accumulation model. A possible model that could explain these results is
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one that specifies an increased probability of mutation with time spent by a
spermatozoon or ovum in a haploid state, a period of time that may also
increase with age of the parent. A firm answer to the question of parental age
and new mutation awaits identification of the molecular defect underlying some
of these syndromes; we will then be in a position to determine in which parent
the mutation occurred and at what age it did so.
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